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ABSTRACT:	 Interactive	 learning	 environments	 with	 body-centric	 technologies	 lie	 at	 the	
intersection	 of	 the	 design	 of	 embodied	 learning	 activities	 and	 multimodal	 learning	 analytics.	
Sensing	technologies	can	generate	large	amounts	of	fine-grained	data	automatically	captured	from	
student	 movements.	 Researchers	 can	 use	 these	 fine-grained	 data	 to	 create	 a	 high-resolution	
picture	of	the	activity	that	takes	place	during	these	student–computer	 interactions	and	explore	
whether	the	sequence	of	movements	has	an	effect	on	learning.	We	present	a	use-case	modelling	
of	 temporal	data	 in	an	 interactive	 learning	environment	with	hand	gestures,	and	discuss	 some	
validity	threats	if	temporal	dependencies	are	not	accounted	for.	In	particular,	we	assess	how,	if	
ignored,	 the	 temporal	 dependencies	 in	 the	 measurement	 of	 hand	 gestures	 might	 affect	 the	
goodness	 of	 fit	 of	 the	 statistical	 model	 and	 would	 affect	 the	 measurement	 of	 the	 similarity	
between	elicited	and	enacted	movement.	Our	 findings	 show	that	accounting	 for	 temporality	 is	
crucial	for	finding	a	meaningful	fit	to	the	data.	In	using	temporal	analytics,	we	are	able	to	create	a	
high-resolution	picture	of	 how	 sensorimotor	 coordination	 correlates	with	 learning	 gains	 in	 our	
learning	system.	

Keywords:	 Embodied	 cognition,	 embodied	 learning,	hidden	Markov	models,	 optimal	matching,	
temporal	analytics	

NOTES	FOR	PRACTICE	
• Sensing	technologies	make	available	the	design	of	 learning	environments	engaging	the	

body	and	movement.	As	 large	amounts	of	data	become	available,	appropriate	analytic	
techniques	are	required	to	make	correct	inferences	about	the	learning	that	takes	place	in	
these	environments.	

• We	illustrate	the	application	of	temporal	analytics	in	the	analysis	of	gestures.	Temporal	
analytics	are	important	for	teasing	out	the	signal	from	the	noise	within	sequences	of	hand	
movements.	

• Incorporating	 these	kinds	of	 fine-grained	multimodal	data	can	prove	 transformative	 in	
the	 design	 of	 effective	 learning	 environments	 because	 of	 their	 potential	 for	
personalization	and	prediction.	
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[T]here	will	certainly	be	some	occasions	when	bodily	engagement	can	be	an	especially	effective	
means	 for	 achieving	 some	 learning	 goals.	 […]	 There	 will	 also	 be	 times	 in	 which	 the	 new	
technologies	that	work	with	the	body	will	ultimately	help	to	tell	us	something	new	and	important	
about	how	and	when	we	learn.	

 —V.	R.	Lee	(2015) 
1 INTRODUCTION 

Interactive	 learning	 environments	 with	 body-centric	 technologies	 are	 gaining	 traction	 in	 educational	
research	because	they	lie	at	the	intersection	of	the	design	of	embodied	learning	activities	and	multimodal	
learning	 analytics	 (e.g.,	 Abrahamson,	 2014;	 Black,	 Segal,	 Vitale,	&	 Fadjo,	 2012;	 Lee,	 2015;	 Lindgren	&	
Johnson-Glenberg,	 2013;	Worsley	 et	 al.,	 2016).	 Sensing	 technologies	 like	 the	 Kinect,	 the	 Leap	Motion	
sensor,	or	automated	visual	tracking,	allow	students	to	interact	with	virtual	objects	on	a	computer	screen	
via	gestures	or	physical	movement.	For	instance,	in	a	technologically	enhanced	activity,	students	may	act	
out	the	behaviours	of	planets	and	meteors	by	moving	around	their	classroom	to	learn	about	Newtonian	
physics	(Lindgren,	2015),	or	use	their	bodies	to	model	how	particles	move	in	different	states	of	matter	to	
learn	 about	 the	particulate	nature	of	matter	 and	 the	 relationship	between	energy,	motion,	 and	 state	
(Danish,	Enyedy,	Saleh,	Lee,	&	Andrade,	2015).	In	other	examples,	students	move	their	arms	to	control	
virtual	objects	on	the	computer	screen	to	 learn	about	proportionality	 (Abrahamson	&	Sánchez-García,	
2016),	geometry	(Smith,	King,	&	Hoyte,	2014),	and	mathematical	proofs	(Nathan	et	al.,	2014).	All	these	
new	 STEM	 learning	 environments	 put	 physical	 movement	 at	 centre	 stage.	 In	 addition,	 they	 allow	
researchers	to	seamlessly	capture	large	amounts	of	data	about	student	movements,	which	opens	up	new	
opportunities	for	studying	the	role	of	embodied	activity	in	learning.	An	ongoing	goal	of	our	research	is	to	
explore	how	we	can	use	these	data	to	refine	both	our	designs,	and	our	analyses	of	learning.	

Sensing	 technologies	 can	 generate	 large	 amounts	 of	 fine-grained	 data,	 automatically	 captured	 from	
student	movements,	which	researchers	can	use	to	analyze	student	activities.	As	more	and	more	evidence	
accumulates	 to	 show	 how	 our	 cognition	 is	 grounded	 in	 the	 body,	 researchers	 are	 also	 increasingly	
interested	in	exploring	how	these	fine-grained	movement	data	might	support	inferences	about	how	the	
body	supports	learning	(or	the	lack	thereof).	For	instance,	Smith	et	al.	(2014)	used	Kinect	movement	logs	
to	study	how	two	students	with	low	and	high	learning	gains	created	different	embodied	representations	
of	 geometrical	 angles	with	 their	 arms.	 From	 the	Kinect	 logs,	 the	authors	 found	 the	 student	with	high	
learning	gains	was	able	to	create	a	wider	range	of	arm	positions	to	represent	the	same	types	of	angles,	
compared	 to	 the	 student	 with	 low	 learning	 gains.	 This	 suggests	 a	 clear	 link	 between	 the	 ability	 to	
represent	 those	 angles,	 and	 learning	 about	 them.	 However,	 Smith	 et	 al.	 (2014)	 did	 not	 develop	 a	
generalizable	statistical	model	to	show	how	students	arrive	at	different	movement	solutions.	Indeed,	little	
is	known	about	how	to	best	use	computer	logs	of	these	kinds	of	movements	to	generate	predictive	models	
of	 learning	from	student	movements.	Predicting	learning	from	movement	can	be	important	for	testing	
hypotheses	about	embodied	learning.	Furthermore,	a	predictive	model	has	important	consequences	for	
the	design	of	technologically	enhanced	learning	environments.	For	instance,	the	statistical	model	can	be	



	

(2017).	A	measurement	model	of	gestures	in	an	embodied	learning	environment:	Accounting	for	temporal	dependencies.	Journal	of	Learning	
Analytics,	4(3),	18–45.	http://dx.doi.org/10.18608/jla.2017.43.3	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	

	

20	

used	 as	 an	 assessment	 tool,	 or	 to	 tailor	 experiences	 for	 individual	 students	 depending	 on	 their	
performance.	Yet,	a	predictive	model	first	requires	a	measurement	model	of	the	physical	movements	—	
i.e.,	a	theoretical	link	between	the	log	data	and	what	these	data	represent	in	the	form	of	a	latent	variable.	

Measuring	physical	movements	—	hand	movements	especially	—	 is	not	a	 simple	 task.	 In	particular,	 it	
requires	the	special	consideration	of	how	to	measure	and	account	for	sequences	of	movements	through	
time	 or	 temporal	 dependencies.	 To	 account	 for	 temporal	 dependencies	 in	 the	 data,	 special	 statistical	
models	are	required	for	relaxing	the	independence	assumption.	The	independence	assumption	refers	to	
the	supposition	that	any	two	observations	in	a	dataset	are	independent.	That	is,	measuring	observation	
at	X1	does	not	provide	any	information	about	observation	at	X2.	But	this	is	not	true	when	modelling	the	
movement	of	hands,	as	the	position	of	a	hand	at	time	t	is	dependent	in	part	on	where	that	hand	was	at	
time	t–1.	As	we	show	in	this	paper,	these	temporal	dependencies	take	place	at	various	levels	of	analysis.	
Specifically,	 a)	 when	 measuring	 hand	 movement	 direction,	 b)	 when	 modelling	 the	 sequence	 of	
movements	throughout	the	activity,	and	c)	when	measuring	the	distance	between	elicited	and	enacted	
movement.	

Our	approach	is	to	model	hand	movement	data	and	time	dependencies	using	two	statistical	tools,	hidden	
Markov	models	(HMM)	and	optimal	sequence	matching.	We	use	HMM	to	create	a	model	of	the	relative	
movement	of	both	hands	(the	combination	of	up,	down,	or	static	movement	of	each	hand).	In	doing	so,	
the	HMM	reduces	the	dimensionality	of	the	data.	This	is	important	because	our	interest	is	in	the	relative	
movement	of	 both	hands	 as	 they	 simultaneously	move,	 regardless	 of	 their	 absolute	position.	We	are	
interested	in	this	relational	movement	because	it	maps	to	the	kinds	of	quantitative	reasoning	that	the	
students	 are	 engaged	 in	 without	 being	 asked	 to	 address	 absolute	 locations	 in	 space.	 In	 addition	 to	
measuring	relative	position,	we	use	an	optimal	matching	(OM)	algorithm	to	measure	the	distance	(also	
known	as	similarity)	between	the	computer-elicited	and	student-enacted	movements.	In	using	the	OM	
algorithm,	 the	 temporal	 information	 within	 the	 movement	 sequences	 is	 accounted	 for	 because	 this	
algorithm	includes	information	about	shifts	and	state	transitions,	as	will	be	explained	below.	The	distance	
between	 elicited	 and	 enacted	 movements	 provides	 a	 measure	 of	 how	 well	 the	 student	 follows	 the	
automated	 movement	 elicited	 by	 the	 computer.	 Measuring	 this	 distance	 can	 be	 important	 when	
examining	the	relationship	between	how	students	coordinate	their	motion	with	the	computer-based	cues	
and	their	learning	gains.	For	instance,	do	students	who	are	better	at	coordinating	their	movements	with	
the	computer’s	also	show	better	learning	gains?	

The	 aim	 of	 this	 paper	 is	 twofold:	 a)	 to	 present	 a	 use-case	 of	 two	 specific	 statistical	methods	 for	 the	
modelling	of	temporal	data	in	an	embodied	learning	environment,	and	b)	to	discuss	some	possible	validity	
threats	 if	 these	temporal	dependencies	are	not	accounted	for.	 In	particular,	we	systematically	analyze	
how	ignoring	temporal	 information	affects	the	measurement	of	hand	movement	data.	Specifically,	we	
assess	how,	if	ignored,	the	temporal	dependencies	might	affect	the	goodness	of	fit	of	the	statistical	model.	
In	addition,	we	examine	how	temporality	affects	the	distance	(or	similarity)	measure	between	elicited	and	
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enacted	movement.	Thus,	our	research	questions	are	as	follows:	How	can	we	use	temporal	analytics	to	
model	and	visualize	student	hand	movement	data?	What	are	some	consequences	of	ignoring	the	temporal	
dependencies	when	modelling	hand	movement	data?	Are	these	statistical	models	of	embodiment	related	
to	learning	gains,	and	as	a	result	are	they	helping	us	to	explore	the	specific	relationship	between	elicited	
gestures	and	learning	outcomes?	

2 BACKGROUND 

2.1 Embodied Learning 

The	embodied	turn	in	cognitive	science	(Anderson,	2003;	Barsalou,	2010;	Wilson,	2002)	has	foregrounded	
the	 key	 role	 the	 body	 plays	 in	 human	 cognitive	 processes.	 Embodiment	 theories	 argue	 higher-order	
cognitive	processes,	including	memory	and	symbolic	thinking,	are	grounded	in	body-based	perception	and	
action	within	a	physical	environment	(Abrahamson	&	Lindgren,	2014;	Barsalou,	2008;	Hutto,	Kirchhoff,	&	
Abrahamson,	2015).	Although	there	are	many	different	approaches,	embodied	cognition	theories	range	
between	 two	 viewpoints.	 On	 the	 one	 hand,	 the	 strong	 view	 of	 embodied	 cognition	 argues	 that	 all	
cognition	is	situated	and	action-based.	Concepts	are	tightly	related	to	perceptual	and	motor	schemas.	For	
instance,	according	to	the	reflexive	abstraction	hypothesis,	mental	objects	with	abstract	properties	are	
internalized	by	coordinating	various	lower-level	empirical	abstractions	which	are	built	up	by	performing	
actions	on	physical	or	imagined	objects	(Abrahamson,	Shayan,	Bakker,	&	Van	Der	Schaaf,	2015;	Piaget,	
1952).	On	the	other	hand,	the	soft	view	of	embodied	cognition	argues	that	some	higher-order	abstract	
schemas	can	interact	with	perceptual	and	motor	schemas	to	ground	their	meaning.	Some	concepts	may	
be	built	upon	other	concepts,	which	in	turn	are	based	on	perceptual	and	motor	information.	For	instance,	
according	to	the	metaphorical	mapping	theory,	knowledge	domains	are	related	to	one	another	by	cross-
domain	mappings,	which	occur	when	a	target	domain	receives	the	inferential	structure	of	a	source	domain	
(Anderson,	2003;	Lakoff	&	Johnson,	1999).	An	extreme	sociocultural	version	of	this	argument	also	notes	
that	there	is	always	a	social	role	of	embodiment,	which	leads	to	continuous	change	in	the	environment	
and	 thus	 feeds	 back	 into	 how	 individuals	 experience	 that	 space	 (Enyedy	 et	 al.,	 2017;	 Hall,	 Ma,	 &	
Nemirovsky,	2014;	Ma,	2017).	

While	 the	 specific	mechanisms	of	embodied	 cognition	are	not	 yet	 clear,	 there	 is	 ample	evidence	 that	
attention	to	gesture	and	movement	 in	the	design	of	 learning	environments	can	support	 learning.	As	a	
result,	 learning	 scientists	 are	 finding	 new	ways	 to	 incorporate	 body-based	movement	within	 learning	
environments.	For	instance,	Lindgren	and	Johnson-Glenberg	(2013)	propose	six	principles	for	the	design	
of	technologically	enhanced	learning	environments	—	i.e.,	1)	ascribe	benefits	of	body-based	learning	to	
everyone,	 2)	 assert	 action–concept	 congruencies,	 3)	 augmentation	 should	 augur	 well,	 4)	 introduce	
opportunities	for	collaborative	interaction,	5)	pair	lab	studies	with	real-world	implementations,	and	6)	re-
envision	assessment.	These	principles	are	aligned	with	a	soft	view	of	embodied	cognition,	where	the	body	
serves	as	a	metaphor	with	which	students	can	explore	principles	and	relationships	in	math	and	science	
domains.	 Complementing	 this	 work,	 Abrahamson	 and	 Lindgren	 (2014),	 also	 propose	 three	 design	
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principles	to	guide	the	application	of	embodied	cognition	in	the	creation	of	learning	environments	—	i.e.,	
1)	 activities	 should	mobilize	 perceptual	 senses	 and	 kinesthetic	 coordination,	 2)	 activities	 should	 have	
meaning	and	provide	action–feedback	loops,	and	3)	students	will	need	guidance	to	become	attuned	to	
the	hidden	aspect	of	the	environment.	Abrahamson	and	Lindgren’s	(2014)	principles	are	aligned	with	a	
stronger	view	of	embodied	cognition,	in	which	“math	and	science	concepts	are	not	abstract,	conceptual	
mental	 entities,	 removed	 from	 the	 physical	 world.	 Rather	 they	 are	 deeply	 somatic,	 kinesthetic,	 and	
imagistic.	Interactive	tasks	typical	of	embodied	design	thus	steer	learners	to	discover,	refine,	and	practice	
physical	 action	 schemes	 that	 solve	 local	 problems	 but	 can	 then	 be	 signified	 as	 enacting	 the	 targeted	
content”	 (Abrahamson	&	Lindgren,	2014,	p.	11).	 Enyedy	and	Danish	 (2015)	 take	a	different	approach,	
aligned	 with	 a	 sociocultural	 view	 of	 learning	 and	 cognition,	 where	 the	 body	 is	 regarded	 as	 another	
semiotic	 resource.	 Enyedy	 and	 Danish	 (2015)	 argue	 that	 “the	 promise	 of	 embodied	 cognition	 for	
education	lies	not	in	the	presence	of	these	links	but	in	the	ways	in	which	embodied	cognition	opens	up	
new	horizons	for	instructional	design.	Designing	instruction	to	account	for	the	body	allows	us	to	legitimize	
and	blend	together	new	modalities	and	new	sets	of	intellectual	resources	for	learning”	(Enyedy	&	Danish,	
2015,	pp.	97–8).	The	approach	we	take	in	the	design	of	an	embodied	simulation	of	population	dynamics	
(ESPD)	bridges	these	prior	approaches	by	attending	simultaneously	to	how	the	body	provides	resources	
to	 reason	with,	and	how	this	 is	 situated	 in	a	meaningful	 social	context.	 In	 the	next	section,	we	briefly	
describe	the	approach	we	followed	for	the	design	of	our	ESPD.	

2.2 A Study with the Embodied Simulation of Population Dynamics 

As	noted	above,	we	see	embodiments	such	as	gesture	providing	both	an	individual	and	a	social	resource.	
Thus,	our	working	hypothesis	was	that	we	can	use	elicited	gestures	to	support	the	way	students	 learn	
about	quantitative	patterns	of	complex	systems,	and	as	these	gestures	become	an	object	to	think	with	
about	 the	graphical	patterns,	 learners	will	 continue	 to	 find	 interactional	 value	 in	using	 these	gestures	
during	 later	 explanations	 and	 collaborations.	 Quantitative	 patterns	 of	 complex	 systems	 are	 nonlinear	
changes	in	the	quantities	of	a	system.	These	quantitative	patterns	are	nonlinear	because	systems	usually	
display	cycles	and	delays,	as	well	as	variable	rates	of	change.	An	example	of	a	nonlinear	system	dynamic	
is	the	feedback	loop	between	the	size	of	a	fox’s	skulk	(group)	and	the	size	of	a	rabbit’s	colony	due	to	their	
predator–prey	interrelationship	(Wilensky	&	Reisman,	2006).	

Elicited	gestures	are	hand	movements	cued	by	the	learning	system	or	the	experimenter.	An	example	of	
an	elicited	gesture	is	to	ask	a	student	to	use	their	hands	to	depict	the	population	levels	in	the	system	being	
studied.	In	the	current	system,	this	might	mean	asking	a	student	to	move	her	left	hand	down	and	her	right	
hand	up,	simultaneously,	while	thinking	about	the	inverse	relationship	between	the	size	of	the	population	
of	foxes	versus	rabbits.	She	would	use	her	left	hand	to	represent	the	rabbit	population,	and	the	downward	
movement	would	represent	 the	shrinking	of	 this	population	size	as	 the	 foxes	 feed	on	the	rabbits.	She	
would	use	her	right	hand	to	represent	the	fox	population,	and	the	upward	movement	to	represent	 its	
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growing	size	as	more	foxes	live	to	reproduce	because	they	feed	on	the	rabbits.	We	believe	that	this	kind	
of	elicited	gesture	has	the	potential	to	transform	how	elementary	students	learn	such	interrelationships.	

In	 our	 learning	 environment	 (Andrade,	 Danish,	 &	Maltese,	 2017),	 called	 the	 embodied	 simulation	 of	
population	 dynamics	 (ESPD),	 a	 student	 explores	 the	 quantitative	 patterns	 of	 complex	 systems	 in	 the	
context	of	predator–prey	dynamics	(e.g.,	foxes	and	rabbits).	The	ESPD	cues	the	learner	to	represent	the	
unstable	equilibrium	between	foxes	and	rabbits	via	hand	gestures	(see	Figure	1).	Our	intention	is	that	by	
moving	their	hands	in	this	way,	the	student	will	make	deeper	connections	to	how	the	two	populations	are	
related,	both	by	connecting	physically	 to	 the	movement	patterns,	and	by	reflecting	explicitly	on	these	
relationships,	which	we	believe	become	more	salient	through	this	embodiment.	The	student’s	goal	is	to	
match	the	bar	graphs,	which	she	controls	using	two	balls	of	different	colours,	with	the	horizontal	markers	
on	the	computer	screen	(see	Figure	1	on	the	left).	For	instance,	the	student	moves	her	right	hand	down	
to	 match	 the	 fox	 population	 marker	 because	 the	 horizontal	 marker	 is	 lower	 than	 the	 depicted	 fox	
population;	her	left	hand	moves	up	to	match	the	rabbit	population	marker	because	the	rabbit	population	
is	 lower	than	the	horizontal	marker.	Through	the	use	of	these	“elicited	gestures,”	the	ESPD	makes	the	
nonlinear	 quantitative	 patterns	 salient	 to	 the	 student,	 who	 will	 learn	 about	 them	 via	 embodied	
mechanisms.	

 
Figure	1.	The	ESPD	learning	environment.	Top:	What	the	student	sees	—	a	bar	graph	of	population	
sizes	on	the	left,	and	a	line	graph	of	the	changes	in	population	sizes	over	time	on	the	right.	Bottom:	
What	the	computer	sees	—	colour	blobs	representing	the	hand	positioning	on	the	left,	and	head	pose	

and	gaze	on	the	right.	The	student’s	goal	is	to	follow	the	movement	of	the	horizontal	markers	by	
moving	the	population	bars	with	the	coloured	balls.	The	horizontal	markers	automatically	move	to	

represent	a	nonlinear	dynamic	relationship	between	predator	and	prey	population	sizes.	
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We	also	hypothesize	 that	we	 can	explore	ways	 in	which	physical	 action	 is	 connected	with	 conceptual	
learning	by	creating	a	statistical	model	of	the	sequence	of	a	student’s	movements	while	interacting	with	
the	learning	system.	For	instance,	during	our	initial	intervention,	we	started	noticing	some	students	used	
gestures	to	support	their	explanations	of	the	relationship	between	predator–prey	populations	in	a	related	
scenario	of	fish	and	dolphins	after	interacting	with	the	ESPD.	In	the	following	example,	a	student	gestured	
with	 a	 simultaneous	movement	 of	 her	 hands,	 left	 hand	 upward	 and	 right	 hand	 downward,	 and	 said,	
“When	the	dolphins	go	up,	fish	would	go	down	because	there’s	so	many	dolphins…”	(see	Figure	2a).	Then,	
she	moved	her	 left	hand	down	and	said,	“But	then	the	dolphins	go	down	because	there’s	not	enough	
fish…”	(see	Figure	2b)	“and	then	the	fish	would	go	up	because	there’s	less	dolphins	to	eat	them…”	while	
moving	her	right	hand	up	(see	Figure	2c).	As	these	spontaneous	gestures	look	like	the	elicited	gestures,	
we	entertained	 the	possibility	 that	 learning	gains	had	something	 to	do	with	 the	ability	 some	students	
displayed	in	appropriating	the	elicited	gestures.	Because	the	elicited	gestures	were	presented	during	the	
interaction	with	the	computer,	and	the	computer	automatically	logs	all	hand	movements,	we	decided	to	
build	a	model	that	would	allow	us	to	measure	the	difference	between	the	sequence	of	elicited	movements	
and	the	sequence	of	enacted	movements.	

	

(a)	Simultaneously	moves	left	
hand	up	and	right	hand	down	

(b)	Moves	left	hand	down	 (c)	Moves	right	hand	up	

Figure	2.	Student	gestures	while	explaining	at	a	later	moment,	similar	to	the	elicited	ones.	

3 METHODS 

3.1 Participants and Research Design 

In	an	exploratory	research	study,	fifteen	third	and	fourth	graders	(F	=	8,	M	=	7,	Avg.	Age	=	9.13,	SD	Age	=	
0.8),	 from	 a	 mixed-age	 class	 at	 a	 private	 school	 in	 the	 mid-western	 US	 participated	 in	 a	 task-based	
cognitive	 interview.	Students	were	 individually	 interviewed	and	answered	a	pre-tutorial	questionnaire,	
then	 interacted	 with	 the	 ESPD,	 and	 then	 answered	 a	 post-tutorial	 questionnaire.	 Interviews	 were	
videotaped	and	 took	30	minutes	on	average.	The	pre-	and	post-tutorial	questions	were	adapted	 from	
Hokayem,	Ma,	and	Jin	(2015).	To	score	the	answers,	we	used	an	adaptation	of	Hokayem	et	al.’s	coding	
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scheme,	which	includes	seven	complexity	levels	of	reasoning	about	predation	dynamics.	The	interaction	
with	 the	 ESPD	 consisted	 of	 nine	 tasks,	 which	 were	 divided	 in	 three	 phases	 (briefing,	 training,	 and	
demonstration).	The	first	three	tasks	familiarize	the	student	with	the	tracking	system	and	display.	For	the	
training	phase	(tasks	4–6),	the	student	follows	the	automatic	movement	of	the	bars	and	is	told	to	notice	
the	patterns	in	the	line	graph	that	her	hand	movements	create.	In	the	demonstration	phase	(tasks	7–9),	
the	student	only	sees	the	line	graph	display	and	is	challenged	to	demonstrate	the	elicited	movement	by	
creating	the	appropriate	changes	 in	one	population	with	respect	to	the	other.	To	answer	the	research	
question	of	whether	students	show	learning	gains	about	quantitative	patterns	of	predation	ecosystems,	
a	Wilcoxon	Signed-Rank	test	for	repeated-measures	was	used	to	compare	the	changes	from	pre-test	to	
post-test	scores.	Furthermore,	we	wanted	to	see	if	there	was	a	connection	between	learning	and	physical	
movement.	We	conceived	that	it	might	be	possible	to	find	a	significant	correlation	between	student	hand	
movements	and	learning	gains.	Specifically,	we	hypothesized	better	learning	gains	should	be	associated	
with	 an	 improvement	 in	 student-enacted	 movements.	 That	 is,	 we	 hypothesized	 that	 students	 who	
increased	their	similarity	with	the	computer-elicited	movement	would	also	have	higher	 learning	gains.	
This	hypothesis	was	tested	using	the	log	data	comparing	the	change	in	similarity	from	task	6	to	task	9	and	
a	Spearman’s	rank	correlation	test.	

3.2 Computer-Elicited and Student-Enacted Data 

The	 embodied	 system,	 the	 ESPD,	 is	 an	 instructional	 design	 that	 uses	 digital	 interaction	 via	 sensing	
technologies	 to	 help	 students	 make	 connections	 between	 physical	 movement	 and	 quantitative	
understanding	 of	 complex	 systems.	 These	 connections	 take	 place	 in	 the	 form	 of	 embodied	
representations	 of	 quantitative	 patterns	 facilitated	 via	 elicited	 gestures.	 The	 ESPD	 system	 has	 three	
components:	a)	a	tracking	system	that	follows	two	coloured	balls,	b)	a	display	with	two	horizontal	markers	
that	cue	nonlinear	movement	and	depict	where	a	student’s	hands	are	relative	to	the	marker,	and	c)	a	line	
graph	 tracking	 the	movement	 of	 the	 bar	 graphs	 over	 time	 (see	 Figure	 1	 above).	 The	 computer-vision	
algorithm	captures	the	vertical	position	(in	pixels)	of	the	colour	blob	centres	in	each	frame.	It	is	assumed	
the	 position	 of	 the	 hands	 controlling	 the	 bar	 graphs	 is	 in	 response	 to	 the	movement	 elicited	 by	 the	
horizontal	markers.	Figures	3	and	4	show	the	elicited	and	enacted	data,	respectively.	Figure	3	shows	the	
computer-elicited	 data	 in	 matrix	 and	 graphic	 form,	 and	 Figure	 4	 shows	 an	 example	 of	 the	 empirical	
movement	tracked	by	the	computer	for	Student	1.		

In	what	follows,	we	systematically	analyze	how	ignoring	temporal	information	affects	the	measurement	
of	the	hand	movements,	as	recorded	in	the	ESPD	log	data.	We	first	analyze	this	issue	at	the	level	of	the	
measurement	of	movement	combinations.	That	is,	we	compare	the	goodness	of	fit	between	the	empirical	
data	and	two	latent	models.	We	compare	an	HMM,	which	accounts	for	temporality,	versus	a	latent	class	
analysis	 (LCA)	 which	 does	 not	 account	 for	 temporality.	 The	 effect	 of	 accounting	 for	 the	 temporal	
dependency	is	assessed	by	comparing	the	fit	indices	for	a	similar	number	of	latent	states	between	these	
two	models.	Then,	we	analyze	the	similarity	measures	between	elicited	and	enacted	movement.	That	is,	
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we	 compare	 the	 distance	 measures	 from	 the	 OM	 algorithm	 versus	 the	 Hamming	 algorithm	 and	 a	
frequencies-only	algorithm,	based	on	the	count	of	matching	attributes.	These	two	latter	algorithms	ignore	
the	temporal	information	at	different	degrees.	We	analyze	how	results	vary	from	the	use	of	these	various	
algorithms.	

Frame	 Rabbits	
(Blue)	

Foxes	
(Red)	

1	 380	 487	
2	 386	 483	
3	 392	 478	
4	 399	 474	
5	 405	 469	
6	 411	 464	
7	 417	 459	
…	 …	 …	

	

	
(a)	 (b)	

Figure	3.	Computer-elicited	movement	data	in	both	table	and	graphical	form.	

Frame	 Left	Hand	
(Blue)	

Right	Hand	
(Red)	

1	 337	 332	
2	 337	 333	
3	 337	 333	
4	 337	 334	
5	 335	 336	
6	 334	 336	
7	 331	 335	
…		 …	 …	

	

	
(c)	 (d)	

Figure	4.	Student-enacted	movement	data	in	both	table	and	graphical	form.	

Having	laid	out	the	general	purpose	of	the	analysis,	next	we	briefly	explain	how	the	first	temporal	analysis	
is	used	for	computing	the	direction	and	qualitative	motion	of	the	hands	from	the	ESPD	logs	(see	Figures	3	
and	4).	
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3.3 Preprocessing Data and Analysis of Hand Direction and Qualitative Motion 

The	most	fine-grained	logs	are	hand	position	values	as	the	computer	measures	(in	pixels)	the	position	of	
the	hands	in	each	video	frame,	at	a	frequency	of	7	frames	per	second.	However,	position	values	without	
temporality	 do	 not	 carry	 meaningful	 information	 about	 student	 behaviour.	 To	 represent	 behaviour,	
direction	values	are	computed.	Direction	values	capture	motion	information	by	considering	the	direction	
and	magnitude	of	the	movement.	Direction	values	are	calculated,	first,	by	subtracting	each	hand’s	vertical	
position	at	time	t	from	position	at	time	t+1.	Second,	by	focusing	only	on	the	qualitative	motion	in	direction	
categories	 (“up,”	“down,”	“static”),	 the	dimensionality	 in	 the	data	 is	 reduced.	We	 focus	on	qualitative	
motion	instead	of	absolute	motion	to	simplify	the	representation	of	hand	movement.	This	is	because	the	
overlap	between	absolute	position	data	(in	pixels)	is	not	as	important	as	the	overlap	in	relative	movement	
data	 (e.g.,	 up-up,	 up-down,	 etc.).	 In	 computing	 the	 qualitative	motion	 data,	 additional	 considerations	
include	 accounting	 for	 student	 idiosyncrasies,	 like	 individual	 differences	 in	 the	 amplitude	 of	 their	
movements,	and	noise.	Thus,	the	magnitude	values	are	first	normalized	(dividing	each	absolute	motion	
value	 by	 the	 largest	 value),	 and	 a	 threshold	 filter	 is	 applied	 to	 avoid	 detecting	 small	 movements	 as	
meaningful	movements.	The	selected	threshold	was	the	student’s	semi-interquartile	range.	An	example	
of	the	qualitative	motion	calculation	is	shown	in	Table	1	and	Figure	5.	

Table	1.	Calculation	Example	of	Hand	Motion	and	Direction	Values	using	a	±1	threshold.	The	hand	
position	is	recorded	in	pixels,	and	two	consecutive	points	are	subtracted.	Positive	magnitude	values	

imply	the	hand	is	going	down	because	pixel	values	increase	downwards	in	a	video	image.	
Frame	 Left	 Right	 magnitude_left	 magnitude	_right	 direction_left	 direction_right	

1	 337	 332	 —	 —	 —	 —	
2	 337	 333	 0	 1	 static	 static	
3	 337	 333	 0	 0	 static	 static	
4	 337	 334	 0	 1	 static	 static	
5	 335	 336	 –2	 2	 up	 down	
6	 334	 336	 –1	 0	 static	 static	
7	 331	 335	 –3	 –1	 up	 static	
8	 331	 335	 0	 0	 static	 static	
…	 …	 …	 …	 …	 …	 …	
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Figure	5.	Calculating	direction	vectors	from	hand	position	data:	c)	is	the	sign	of	the	difference	between	
a)	and	b).	

Direction	vectors	only	 indicate	the	direction	of	movement	between	time	t	and	t+1.	 If	the	 interest	 is	 in	
understanding	the	pattern	of	the	bimanual	movement,	a	statistical	model	can	be	used	to	represent	the	
bimanual	motion	 coordination	 at	 every	 two	 frames	 for	 the	 duration	 of	 the	 activity.	 For	 instance,	 the	
student	might	be	trying	to	coordinate	a	simultaneous	movement	of	one	hand	going	up	and	the	other	hand	
going	down.	Or	perhaps	the	student	might	be	trying	to	coordinate	the	movement	of	one	hand	after	she	
starts	the	movement	of	the	other	hand.	When	using	a	model-based	statistical	approach,	latent	states	can	
be	 inferred	 from	 the	 patterns	 of	 fine-grained	 log	 data.	 This	 data	 reduction	 would	 go	 from	 two	 data	
streams	of	(categorical)	direction	vectors,	to	a	sequence	of	motion	states.	However,	ignoring	the	temporal	
dependency	between	observations	in	this	step	might	produce	too	many	latent	states	or	too	many	state	
transitions,	as	will	be	shown	later.	To	account	for	the	autocorrelation	between	observation	at	time	t+1	
and	observation	at	time	t,	we	use	an	HMM	to	model	the	sequence	of	movements	throughout	the	learning	
activity.	

3.4 Using a Hidden Markov Model to describe the Hand Movement Sequence 

An	HMM	is	also	referred	to	as	a	dependent	finite	mixture	model	(Gollery,	2008;	MacDonald	&	Zucchini,	
1997;	 Visser	 &	 Speekenbrink,	 2010;	 Zucchini	 &	MacDonald,	 2009).	 HMMs	 have	 been	 used	 in	 various	
applications	like	speech	recognition,	EEG	analysis,	psychology,	economics,	and	genetics.	The	purpose	of	
this	statistical	model	is	to	infer	an	unordered	set	of	latent	states	that	explain	the	correlation	between	a	
set	 of	 observed	 variables	 given	 an	 estimated	 transition	 rate	 between	 latent	 states.	 The	HMM	 can	 fit	
univariate	or	multivariate	data	for	continuous	or	discrete	variables.	The	fundamental	assumption	is,	at	
any	point	in	time,	the	observations	are	distributed	as	mixtures	given	an	r	number	of	latent/hidden	states,	
and	time-dependencies	between	observations	are	due	to	time-dependencies	between	the	hidden	states	
following	 a	 first-order	 Markov	 process	 (Visser	 &	 Speekenbrink,	 2010).	 A	 first-order	 Markov	 process	
assumes	that,	given	a	sequence	of	a	discrete	random	variable,	the	occurrence	at	time	t+1	is	conditioned	
upon	the	most	recent	value	of	the	random	variable	at	time	t	(Zucchini	&	MacDonald,	2009).	This	property	
is	a	relaxation	of	the	independence	assumption,	and	can	be	displayed	as	a	direct	graph	where	any	future	
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observation	is	dependent	only	on	the	present	observation	(see	Figure	6a).	The	conditional	probabilities	
associated	with	a	Markov	process	are	called	transition	probabilities,	and	convey	the	temporal	association	
between	the	distinct	hidden	states.	All	the	transitions	from	state	i	to	state	j	create	a	matrix	of	transition	
probabilities.	When	this	relaxation	of	independence	is	incorporated	in	a	model	for	the	analysis	of	finite	
mixture	distributions,	the	model	is	thus	called	a	hidden	Markov	model.	Thus,	the	HMM	has	two	parts,	the	
first	part	represents	the	C	latent	parameter	process	of	a	Markov	walk,	and	the	second	part	represents	the	
X	 state-dependent	process	such	that	 the	distribution	of	 the	observations	depends	only	on	the	current	
state	 (see	 Figure	 6b).	 In	 contrast,	 independent	 finite	mixture	models	 assume	 the	 X	 observations	 are	
independent	when	conditioned	upon	the	latent	states	(see	Figure	6c).	One	can	think	of	an	independent	
finite	 mixture	 model	 as	 a	 factor	 analysis	 with	 categorical	 observed	 variables	 instead	 of	 continuous	
variables.	A	factor	is	a	latent	state,	which	is	responsible	for	a	distinct	combination	of	levels	in	the	observed	
variables.	An	HMM	would	impose	a	Markov	process	on	top	of	the	factor	analysis.	

 

  

(a)	 (b)	 (c)	

Figure	6.	(a)	A	Markov	chain,	(b)	a	dependent	finite	mixture	model	also	known	as	a	hidden	Markov	
model,	and	(c)	an	independent	finite	mixture	model.	

The	HMM	inputs	a	sequence	of	observations	and	predicts	a	latent	state	sequence	of	length	N–1,	where	N	
is	the	number	of	time	points	in	the	data	frame.	The	meaning	of	the	latent	states	is	evaluated	by	examining	
the	composition	of	the	mixture	of	observed	variables.	An	example	of	an	input	data	frame	can	be	seen	in	
the	last	two	columns	of	Table	1	(direction_left	and	direction_right	columns).	An	example	of	a	hypothetical	
predicted	six-state	sequence,	fit	to	the	computer-elicited	movement	data,	is	shown	in	Figure	7.	Figure	7	
shows	the	plotted	position	of	the	hands	over	time	as	blue	and	red	lines.	The	vertical	lines	show	where	
there	is	a	state	change	in	the	hands’	relative	movement.	The	periods	between	vertical	lines	correspond	
to	 latent	 states.	 The	 state	 sequence	 can	 also	 be	 plotted	 as	 a	 sequence	 of	 colours	where	 each	 colour	
represents	a	distinct	state	(see	Figure	8).	

The	meaning	of	these	latent	states	can	be	inferred	from	the	combination	of	movements.	For	instance,	on	
the	left	side	of	Figure	7,	between	times	0	and	around	15,	the	right	hand	(red)	is	moving	downwards	while	
the	left	hand	(blue)	is	within	the	threshold	of	being	static.	This	period	corresponds	to	State	6.	Between	
times	15	and	50,	the	right	hand	(red)	keeps	moving	downwards	while	the	left	hand	(blue)	starts	to	move	
upwards.	This	period	corresponds	to	State	3.	
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Figure	7.	An	example	of	a	sequence	of	latent	states.	The	trajectory	of	hand	movements	over	time	

(right	hand	in	red	and	left	hand	in	blue).	The	vertical	lines	show	the	division	of	the	hands’	trajectory	
by	latent	state.	

 
Figure	8.	A	colour-coded	representation	of	the	state	sequence	for	the	bimanual	motor	coordination	

example.	

The	meaning	can	also	be	inferred	from	the	matrix	of	probability	distributions	of	response	categories	(see	
Table	2).	For	instance,	Table	2	shows	the	corresponding	distribution	of	categories	for	the	6-state	model.	
In	State	1,	the	left	hand	has	a	probability	of	100%	to	move	down	as	the	right	hand	remains	static	with	a	
probability	of	92%.	Note	the	probabilities	are	not	always	100%.	

Table	2.	Probability	distribution	of	hand	movements	given	latent	states	
	 Left	Hand	 Right	Hand	
	 Down	 Static	 Up	 Down	 Static	 Up	

State	1:	down	–	static	 1.00	 0.00	 0.00	 0.08	 0.92	 0.00	
State	2:	static	–	down	 0.16	 0.84	 0.00	 1.00	 0.00	 0.00	
State	3:	down	–	up	 1.00	 0.00	 0.00	 0.00	 0.00	 1.00	
State	4:	up	–	static	 0.00	 0.00	 1.00	 0.00	 1.00	 0.00	
State	5:	up	–	down	 0.00	 0.00	 1.00	 0.97	 0.03	 0.00	
State	6:	static	–	up	 0.03	 0.78	 0.19	 0.00	 0.00	 1.00	

The	HMM	produces	 a	 transition	 probability	matrix.	 An	 example	 of	 a	matrix	 of	 transition	 probabilities	
between	latent	states	is	plotted	in	Figure	9.	For	instance,	Figure	9	shows	State	2	only	occurs	after	State	5	
and	no	other	state.	In	a	similar	vein,	State	4	only	occurs	after	State	6,	5	after	4,	3	after	1,	and	1	after	2.	
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Figure	9.	Transition	probabilities	between	latent	states	of	the	computer-elicited	data.	

As	the	number	of	states	is	not	defined	a	priori,	several	models	can	be	fit	to	the	data.	Therefore,	to	select	
the	 best	 number	 of	 states	 for	 the	 empirical	 data,	 various	 fit	 indices	 can	 be	 employed.	 These	 indices	
evaluate	 how	 well	 the	 expected	 cell	 counts	 under	 a	 given	 model	 replicate	 the	 observed	 cell	 counts	
(Hagenaars	&	McCutcheon,	2002).	 The	Akaike	 information	 criteria	 (AIC)	 and	 the	Bayesian	 information	
criteria	(BIC)	account	for	the	increment	in	the	number	of	parameter	estimates	and	therefore	penalize	the	
increment	in	the	number	of	latent	states.	By	using	the	AIC	and	the	BIC,	a	balanced	number	of	states	fitting	
the	data	well	can	be	found.	The	lower	the	value	of	these	indices,	the	better	the	model	fits	to	the	data.	
Thus,	to	select	an	optimum	number	of	latent	states,	a	series	of	models	with	increasing	numbers	of	latent	
states	are	fit	to	the	data.	Then,	the	model	with	the	lowest	AIC	or	BIC	is	selected.	As	we	measure	the	entire	
sequence	of	movements	throughout	each	task,	however,	it	is	expected	that	nine	latent	states	will	be	the	
best	fit	to	the	data.	This	is	because	there	are	nine	total	possible	movement	combinations	for	the	two	hand	
direction	values	(see	Table	3).	Therefore,	we	would	expect	that	the	AIC	and	the	BIC	for	the	whole	dataset	
would	point	to	a	9-state	model.	

Table	3.	Nine	possible	combinations	of	hand	direction	values	
Hand	 Direction	
Right	 Up	 Up	 Up	 Down	 Down	 Down	 Static	 Static	 Static	
Left	 Up	 Down	 Static	 Up	 Down	 Static	 Up	 Down	 Static	

 
In	summary,	an	analysis	of	ESPD	log	data	requires	us	to	model	the	distinct	combinations	of	relative	hand	
movements	as	they	unfold	over	time.	Therefore,	the	HMM	helps	us	translate	the	qualitative	motion	data	
into	a	sequence	of	latent	states	(i.e.,	a	representation	of	the	relative	bimanual	movement	over	time).	In	
the	next	section,	we	entertain	the	possibility	of	using	a	different	statistical	model,	one	which	does	not	
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account	for	temporal	dependencies.	We	do	this	to	explore	the	validity	of	the	HMM	in	modelling	the	hand	
movement	data.	

3.5 Ignoring Temporal Dependencies in the Data: HMM versus LCA 

Let	us	pretend	we	were	to	ignore	the	Markov	process	on	the	latent	states.	Note	we	are	not	suggesting	
one	should	use	a	different	model	instead	of	an	HMM.	The	following	is,	thus,	a	hypothetical	example	only	
for	illustration	and	not	for	research	purposes.	If	the	independence	assumption	is	not	relaxed,	the	model	
reduces	to	an	independent	finite	mixture	model,	as	stated	above.	An	independent	finite	mixture	model	
for	 categorical	 variables	 is	 also	 known	 as	 LCA	 (Agresti,	 2014;	 Collins	 &	 Lanza,	 2013;	 Hagenaars	 &	
McCutcheon,	2002;	Linzer	&	Lewis,	2011;	Vermunt	&	Magidson,	2004;	Vermunt,	Tran,	&	Magidson,	2008).	
LCA	has	been	used	in	various	social	science	applications	including	econometrics,	behavioural	psychology,	
social	psychology,	biometrics,	and	consumer	behaviour,	among	others.	The	purpose	of	this	model	is	to	
infer	an	unordered	 latent	categorical	variable	 that	explains	 the	correlation	between	a	set	of	observed	
categorical	 variables	 (Linzer	 &	 Lewis,	 2011).	 The	 fundamental	 assumption	 is	 the	 instantiation	 of	 the	
observed	categorical	variables	is	conditioned	upon	the	state	of	the	latent	categorical	variable.	Thus,	the	
finite	set	of	 latent	states	explain	the	distinct	mixtures	of	frequencies	in	the	cross-classification	table	of	
observed	variables.	The	model	is	called	independent	because	it	is	assumed	that	the	distinct	latent	states	
are	independent	of	each	other	(Hagenaars	&	McCutcheon,	2002).	This	means	that	after	the	observations	
are	 conditioned	 upon	 the	 latent	 class,	 the	 observations	 are	 also	 independent,	 a	 property	 called	 local	
independence	(Linzer	&	Lewis,	2011).	In	the	results	in	section	4,	we	compare	the	outcome	of	the	LCA	to	
the	HMM	and	show	how	the	LCA	does	not	provide	a	good	account	of	hand	data,	precisely	because	it	does	
not	account	for	temporal	dependencies	—	e.g.,	transition	rates	between	states.	Before	moving	on	to	the	
results	section,	however,	we	briefly	explain	our	approach	to	creating	a	similarity	measure	between	the	
elicited	and	enacted	movements.	

3.6 Optimal Sequence Matching 

Because	 the	 student	movement	 is	 a	 response	 to	 the	 computer-elicited	movement,	 a	measure	 of	 the	
similarity	between	the	student-enacted	movement	and	the	computer-elicited	movement	can	serve	as	a	
proxy	of	the	student’s	ability	to	respond	to	the	elicited	movement.	This	similarity	can	be	conceived	of	as	
the	student’s	sensorimotor	coordination.	We	use	the	term	sensorimotor	coordination	because	the	action	
combines	 the	 perceptual	 aspects	 of	 noticing	 the	 position	 of	 the	 bars	 with	 respect	 to	 the	 horizontal	
markers	on	the	visual	display,	and	the	motor	aspects	of	the	movement	of	both	hands	as	they	respond	to	
the	 perceptual	 information.	We	 propose	 making	 use	 of	 the	 OM	 algorithm	 to	 measure	 the	 similarity	
between	student-enacted	and	computer-elicited	movement	because	this	algorithm	can	account	for	time	
dependencies	in	the	data.	

The	OM	algorithm	(Abbott	&	Tsay,	2000;	Gabadinho,	Ritschard,	Mueller,	&	Studer,	2011)	is	a	dissimilarity	
measure,	 part	 of	 the	 family	 of	 measures	 known	 as	 edit	 distances,	 based	 on	 the	 minimal	 cost	 of	
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transforming	one	sequence	into	the	other	(Gabadinho	et	al.,	2011).	The	larger	the	cost	of	transforming	
one	sequence	into	the	other,	the	more	dissimilar	two	sequences	are.	Conversely,	a	cost	of	0	implies	two	
identical	 sequences.	 The	 OM	 algorithm	 inputs	 a	 matrix	 of	 sequences,	 a	 cost	 value	 for	 the	
insertion/deletion	of	 an	 element	 (or	 indel	 costs),	 and	 a	matrix	 of	 substitution	 costs	 (e.g.,	 the	 cost	 for	
swapping	 State	 A	 for	 State	 B).	 Depending	 on	 the	 relative	 costs	 between	 insertion/deletion	 and	
substitution,	 the	minimum	 value	 can	 favour	 either	 insertions/deletions	 or	 substitutions.	 For	 instance,	
indel	costs	shift	the	position	of	all	elements	to	the	right	of	the	sequence,	allowing	for	position-dependent	
costs.	For	instance,	take	the	state	sequence	S1	=	[A,	B,	C],	and	find	how	many	insertions	or	deletions	are	
required	to	transform	it	into	S2	=	[B,	C,	A].	It	can	be	seen	that	one	could	take	out	State	A	at	the	beginning	
of	S1	=	[B,	C],	and	then	add	State	A	as	its	last	element,	indeed	making	it	identical	to	S2	=	S1	=	[B,	C,	A].	If	
each	transformation	is	worth	1,	this	operation	would	have	a	cost	of	d	=	2.	Note	this	indel	process	can	be	
regarded	as	a	 left	or	right	shift	of	all	elements	to	the	right	of	the	deleted/inserted	element.	Yet,	 if	the	
costs	of	deleting	and	inserting	elements	are	sufficiently	high,	then	the	minimal	cost	will	be	dominated	by	
substitution	 costs.	 For	 instance,	 if	 instead	 of	 deleting	 and	 inserting	 State	A	 from	 S1,	 one	 decides	 to	
substitute	each	of	its	elements	(i.e.,	three	substitutions,	one	per	element),	one	can	transform	S1	to	be	
identical	to	S2.	Depending	on	how	much	each	substitution	costs,	this	transaction	can	cost	less	or	more	
than	inserting	and	deleting	one	element.	If	substitution	costs	are	1,	the	total	cost	of	this	procedure	is	d	=	
3	(as	three	substitutions	are	required).	However,	if	substitution	costs	are	0.5,	the	final	substitution	cost	d	
=	1.5,	making	it	cheaper	than	the	computed	 indel	cost.	Therefore,	a	careful	balance	between	indel	and	
substitution	costs	should	be	determined	to	prevent	either	one	from	dominating	the	calculation.	However,	
setting	 substitution	and	 indel	 costs	 is	 not	 an	easy	 task,	 and	 can	be	a	 controversial	 feature	of	 the	OM	
algorithm.	Researchers	have	tried	a	variety	of	approaches	to	set	substitution	and	indel	costs.	For	instance,	
researchers	have	proposed	using	indel	costs	less	than	cl	/	2	*	max(sm),	where	cl	is	the	common	sequence	
length	 and	 max(sm)	 the	 highest	 substitution	 cost	 (Gabadinho	 et	 al.,	 2011).	 For	 substitution	 costs,	
researchers	 have	 tried	 several	 approaches,	 such	 as	 a	 linear	 order	 of	 some	 sort,	 some	 known	 linear	
property	of	the	states,	or	theoretically	generated	costs	(Abbott	&	Tsay,	2000).	To	incorporate	information	
about	 the	 time	 dependencies	 among	 latent	 states	 in	 a	 sequence,	 the	 substitution-cost	matrix	 can	 be	
specified	 to	 be	 equal	 to	 the	 estimated	 transition	 rates	 between	 latent	 states.	 In	 this	 way,	 the	 OM	
algorithm	can	include	the	information	contained	in	the	transition	matrix	from	the	HMM.	Because	of	these	
various	 possible	 approaches,	 methodologists	 recommend	 a	 systematic	 analysis	 of	 how	 different	 cost	
schemes	alter	the	results	(Abbott	&	Tsay,	2000).	

In	the	following	dummy	example,	we	show	how	the	indel	and	substitution	costs	affect	the	distance	values.	
Suppose	that	one	has	three	two-state	sequences	of	length	3	as	shown	in	Figure	10,	and	assign	an	insertion	
or	deletion	cost	of	1	—	the	cost	of	 inserting	or	deleting	a	state	in	the	sequence.	For	instance,	deleting	
state	A	at	time	3	in	sequence	3	would	cost	1.	Then,	inserting	state	B	at	time	3	in	sequence	3	would	also	
cost	1.	Thus,	the	indel	cost	of	transforming	sequence	3	into	sequence	2	is	2.	Furthermore,	suppose	any	
substitution	 cost	 is	 also	 1	—	 the	 cost	 of	 substituting	 a	 state	 in	 the	 sequence	 by	 any	 other	 state.	 For	
instance,	 substituting	 state	 A	 for	 state	 B	 at	 time	 3	 in	 sequence	 3	 would	 have	 a	 cost	 of	 1.	 Thus,	 the	
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substitution	cost	of	transforming	sequence	3	into	sequence	2	is	1.	Therefore,	given	the	above	indel	and	
substitution	 costs,	 the	 minimal	 cost	 of	 transforming	 sequence	 3	 into	 sequence	 2	 is	 1	 —	 because	
substituting	is	cheaper	than	deleting	and	inserting.	In	the	same	vein,	the	substitution	cost	of	transforming	
sequence	1	into	sequence	2	is	3	—	because	all	three	states	need	substitution.	However,	the	indel	cost	of	
transforming	sequence	1	into	sequence	2	is	2	—	because	state	A	at	time	1	needs	to	be	deleted,	shifting	
the	sequence	to	the	left,	and	then	state	B	at	time	3	is	inserted.	Therefore,	the	minimal	cost	of	transforming	
sequence	1	 into	 sequence	2	 is	2.	 Finally,	 the	cost	of	 transforming	 sequence	2	 into	 sequence	3	 is	1	—	
because	it	requires	only	one	substitution.		

Sequence	 Time	1	 Time	2	 Time	3	
3	 B	 A	 A	
2	 B	 A	 B	
1	 A	 B	 A	

	

	

Figure	10.	Three	dummy	sequences	to	illustrate	the	OM	algorithm.	

If	indel	costs	are	too	high	compared	to	substitution	costs,	most	or	all	distance	values	will	be	determined	
by	substitution.	This	is	not	an	ideal	situation	when	shifts	are	of	importance.	Shifts	occur	when	a	block	of	
states	at	an	initial	position	are	very	similar	to	the	target	sequence	if	moved	to	a	different	position.	This	
circumstance	occurs	when	two	series	(two	temporal	patterns)	are	similar	but	differ	only	by	a	few	positions	
(when	pattern	A	 is	equal	 to	pattern	B	but	shifted	to	the	 left	or	 to	right).	 In	our	study	of	sensorimotor	
coordination,	 this	 is	 of	 great	 importance	 because	 there	 may	 be	 a	 case	 where	 a	 student’s	 enacted	
movement	is	like	the	computer-elicited	movement	but	is	delayed	by	a	few	seconds.	Thus,	we	should	not	
expect	the	two	sequences	—	elicited	versus	enacted	—	to	be	perfectly	aligned,	but	instead	we	need	to	
allow	some	 latitude	 for	 the	enacted	motion	pattern	 to	 catch	up	with	 the	elicited	motion	pattern.	We	
assume	this	latency	is	a	function	of	a	student’s	reaction	speed	to	the	changes	in	the	perceptual	input	from	
the	screen.	

Furthermore,	as	mentioned	above,	the	OM	algorithm	allows	a	case	in	which	substitution	costs	depend	on	
the	transition	rates	between	states.	Here,	not	all	the	substitution	costs	are	1,	but	depend	on	the	transition	
probability	from	state	i	to	state	j.	For	instance,	consider	the	three	3-state	sequences	in	Table	4.	If	state	A	
at	time	3	in	sequence	3	was	to	be	substituted	for	state	C,	the	cost	would	be	1.75.	Compare	that	cost	to	
the	cost	of	substituting	state	B	at	time	3	in	sequence	2	to	state	C	—	it	would	only	cost	0.6.	Thus,	both	
substitution	and	indel	costs	can	account	for	temporal	information	contained	in	the	sequences	and	in	the	
dependencies	of	transitioning	from	one	state	to	the	other.	When	applied	to	the	sequence	of	gesture	data,	
the	OM	algorithm	will	measure	the	steps	required	to	transform	a	student-enacted	motion	sequence	into	
the	computer-enacted	motion	sequence.	
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Table	4.	Three	hypothetical	three-state	sequences	and	corresponding	transition	matrix	
Three-State	Dummy	Sequences	

Sequence	 Time	1	 Time	2	 Time	3	 Time	4	 Time	5	
3	 B	 A	 A	 C	 B	
2	 B	 C	 B	 A	 B	
1	 A	 B	 C	 B	 A	

	

Transition	Matrix	
	 To	A	 To	B	 To	C	

From	A	 0.00	 0.90	 1.75	
From	B	 0.90	 0.00	 0.60	
From	C	 1.75	 0.60	 0.00	

	

 
In	the	next	section,	we	entertain	the	idea	of	using	other	similarity	measures	that	account	for	temporal	
dependency	at	a	lesser	degree	or	not	at	all.	We	do	this	to	study	the	validity	of	the	OM	algorithm	to	capture	
the	 similarities	between	 the	elicited	and	enacted	 sequence	of	movements	 in	 the	ESPD	 log	data.	As	 is	
shown	in	the	results,	section	4,	these	other	algorithms	do	not	maintain	the	expected	order	of	similarities	
suggested	by	a	qualitative	appraisal	of	various	student	sequences.	

3.7 OM versus other Similarity Measures 

One	can	also	resort	to	using	other	similarity	measures	for	quantifying	the	distance	between	computer-
elicited	and	student-enacted	movements,	but	these	other	measures	might	fail	to	account	for	temporality	
at	various	degrees.	We	compare	the	OM	distances	to	a	set	of	distances	based	on	the	count	of	matching	
attributes.	These	distances	are	proximity	measures	because	they	compare	matching	positions	between	
two	 given	 sequences	 (Gabadinho	 et	 al.,	 2011).	 First,	 we	 compare	 the	 OM	 distance	 to	 the	 Hamming	
distance	 (Hamming,	1950),	which	measures	 the	number	of	positions	at	which	two	sequences	of	equal	
length	differ.	Second,	we	compare	 the	OM	distance	 to	a	distance	measure	based	on	the	 frequency	of	
attributes;	 that	 is,	 one	 that	 does	 not	 include	 any	 temporal	 information.	 This	 index	 is	 based	 on	 the	
Euclidean	distance	applied	to	the	frequency	of	states.	In	summary,	we	compare	the	OM	algorithm,	which	
accounts	for	temporal	information,	to	one	method	that	does	not	allow	for	shifts	(the	Hamming	distance)	
and	another	that	does	not	use	any	temporal	information	at	all	(the	Euclidean	distance).	

4 RESULTS 

4.1 HMM 

Using	the	depmixs6	R	package	(Visser	&	Speekenbrink,	2010),	seven	r-state	HMM	models,	where	r	=	4…10,	
were	fitted	to	a	dataset	with	the	computer-elicited	data	and	data	 from	the	fifteen	students.	A	9-state	
HMM	model	best	fits	the	data,	according	to	the	AIC	(see	Table	5).	Note	the	BIC	index	suggests	an	8-state	
model	because	it	is	a	more	conservative	index	than	the	AIC.	However,	after	careful	examination	of	the	
patterns,	the	response	distribution	for	an	8-state	model	is	not	as	clean	as	a	9-state	model,	as	we	would	
expect	from	the	nine	possible	hand	motion	combinations.	The	response	distribution	for	the	9-state	model	
can	be	seen	in	Table	6.	
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Table	5.	Fit	Indices	for	r-state	HMM	models	with	both	the	student-enacted	and	computer-elicited	data	
r	 AIC	 BIC	
4	 1258.762	 1394.86	
5	 1156.478	 1349.648	
6	 1010.409	 1269.433	
7	 929.0487	 1262.707	
8	 771.8023	 1188.875	
9	 700.3675	 1209.635	
10	 742.2089	 1352.452	

 
Four	predicted	motion	sequences	for	150-frame	excerpts	(approximately	20	seconds)	are	plotted	in	Figure	
11.	 Figures	 11a	 and	 11b	 compare	 the	 computer-elicited	 versus	 student	 1	motion	 data.	 Two	 facts	 are	
apparent	in	this	comparison.	First,	the	states	in	the	student-enacted	sequence	shift	less	smoothly	than	
the	computer-elicited.	This	is	because	the	student	1’s	movements	are	not	as	smooth	as	the	computer’s,	
probably	due	to	the	student’s	attempts	at	correcting	her	movement	while	trying	to	follow	the	elicited	
movement	 of	 the	 bar	 graphs.	 Second,	 the	 pattern	 of	movements	 in	 the	 student-enacted	 sequence	 is	
shifted	to	the	right.	As	anticipated,	student	1’s	movements	lag	behind	the	computer’s	by	about	20	frames	
(approximately	2	seconds),	probably	due	to	a	lag	in	the	student’s	sensorimotor	coordination.	The	graphs	
for	students	2	and	3,	however,	are	not	as	smooth	as	those	for	student	1	(see	Figures	11c	and	11d).	These	
students	seem	to	have	struggled	more	than	student	1	to	shadow	the	computer	movements	(at	least	in	
this	short	window	sequence).	

Table	6.	Probability	distribution	of	hand	movement	given	latent	states	
	 Left	Hand	 Right	Hand	
	 Down	 Static	 Up	 Down	 Static	 Up	

State	1:	static	–	static	 0.00	 1.00	 0.00	 0.00	 1.00	 0.00	
State	2:	down	–	down	 0.97	 0.03	 0.00	 1.00	 0.00	 0.00	
State	3:	static	–	up	 0.02	 0.98	 0.00	 0.00	 0.00	 1.00	
State	4:	up	–	static	 0.00	 0.00	 1.00	 0.00	 1.00	 0.00	
State	5:	up	–	down	 0.00	 0.00	 1.00	 0.99	 0.01	 0.00	
State	6:	down	–	static	 1.00	 0.00	 0.00	 0.02	 0.98	 0.00	
State	7:	down	–	up	 1.00	 0.00	 0.00	 0.00	 0.00	 1.00	
State	8:	up	–	up	 0.00	 0.07	 0.93	 0.00	 0.00	 1.00	
State	9:	static	–	down	 0.00	 1.00	 0.00	 1.00	 0.00	 0.00	
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(a) Computer-elicited	data	

	
(b) Student	1	

	 	

	

	
(c) Student	2	

	
(d) Student	3	

	

Figure	11.	Graphical	representation	of	the	trajectories	and	latent	states	for	the	computer-elicited	
motion	sequence	and	three	student-enacted	motion	sequences.	

 
In	summary,	 the	HMM	captures	student	movements	as	a	sequence	of	bimanual	motion	patterns,	and	
there	is	a	motion	sequence	per	each	student	for	tasks	6	and	9.	We	can	then	compare	the	similarity	of	
these	sequences	to	the	computer-elicited	sequence	and	study	how	close	the	student	movements	were	to	
the	ones	from	the	computer	and	whether	there	are	changes	from	task	6	to	task	9.	But	before	looking	at	
this	similarity	measure,	let	us	review	the	results	if	we	were	to	ignore	the	transition	probability	between	
latent	states.	That	is,	examine	the	results	from	an	LCA	compared	to	the	HMM.	

4.2 HMM vs LCA 

Using	the	poLCA	R	package	(Linzer	&	Lewis,	2011),	we	ran	seven	c-state	LCA	models,	where	c	=	4…10,	with	
the	same	dataset	as	the	HMM	models	above.	Goodness	of	fit	values	are	shown	in	Table	7.	Two	facts	stand	
out	from	this	table.	First,	the	AIC	and	BIC	values	are	much	higher	than	the	same	fit	indices	for	the	HMM.	
Even	the	largest	AIC	value	of	the	HMM	model	=	1394,	is	lower	than	the	best	AIC	value	from	the	LCA	model	
=	2500.	Second,	the	values	keep	increasing,	which	implies	a	worse	fit,	as	more	latent	states	are	added	to	
the	 model.	 Thus,	 as	 more	 latent	 states	 are	 added,	 the	 model	 does	 a	 worse	 job	 accounting	 for	 the	
observations.	
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Table	7.	Fit	Indices	for	c-state	LCM	models	with	the	same	data	as	the	HMM	
c	 AIC	 BIC	
4	 2500.85	 2584.265	
5	 2510.85	 2616.216	
6	 2520.85	 2648.167	
7	 2530.85	 2680.118	
8	 2540.85	 2712.070	
9	 2550.85	 2744.021	

 
If	we	were	to	lay	out	the	predicted	sequence	from	a	6-state	LCA,	it	would	look	like	Figure	12b.	It	is	apparent	
that	states	appear	at	strange	moments,	scattered	throughout	the	sequence.	This	happens	because	latent	
states	are	not	influenced	by	each	previous	state,	and	there	is	no	continuity	in	the	sequence.	Put	another	
way,	these	states	are	not	temporarily	stable.	Furthermore,	the	latent	states	appear	without	a	particular	
order	throughout	the	sequence.	Compare	this	sequence	to	the	one	constructed	from	the	HMM	(see	Figure	
12a),	and	it	is	easy	to	see	that	there	is	a	remarkable	difference	in	terms	of	the	predicted	states	consistency.	

	

	 	
(a)	Hidden	Markov	model	predicted	sequence	

	
(b)	Latent	class	analysis	predicted	sequence	

Figure	12.	Graphical	representation	of	the	computer-elicited	motion	sequence	comparing	the	use	of	
HMM	and	LCA	to	predict	the	latent	states.	

Having	explored	 the	 validity	of	 the	HMM	approach,	 in	 comparison	 to	 the	 LCA	model,	we	move	on	 to	
examine	 the	 results	 of	 the	 similarity	 values	 between	 elicited	 and	 enacted	 movement	 using	 the	 OM	
algorithm.	

4.3 OM Values 

Using	the	TramineR	R	package	(Gabadinho	et	al.,	2011)	we	calculated	the	cost	of	transforming	the	student-
enacted	 sequences	 into	 the	 computer-elicited	 sequence.	 For	 instance,	 student	 1’s	 distance	 value	was	
calculated	to	be	128,	given	an	indel	cost	of	1	and	a	substitution	cost	matrix	with	the	transition	probabilities	
matrix	(see	Table	8).	This	means	about	60	operations	(between	insertions,	deletions,	and	substitutions)	
are	required	to	transform	this	student-enacted	sequence	 into	the	computer-elicited	motion	sequence.	



	

(2017).	A	measurement	model	of	gestures	in	an	embodied	learning	environment:	Accounting	for	temporal	dependencies.	Journal	of	Learning	
Analytics,	4(3),	18–45.	http://dx.doi.org/10.18608/jla.2017.43.3	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	

	

39	

We	also	examined	how	student	1’s	distance	value	compares	to	the	other	two	student	sequences	that	do	
not	appear	as	closely	aligned	to	the	computer-elicited	movement.	As	anticipated,	the	calculated	distances	
for	 student	 2	 and	 student	 3	 are	 189	 and	200,	 respectively.	 Compared	 to	 student	 1’s	 sequence,	 these	
sequences	are	48%	and	56%	less	similar	to	the	computer-elicited	movement.	

Table	8.	Substitution	cost	matrix	with	the	transition	matrix	of	the	9-state	HMM	
	 To	1	 To	2	 To	3	 To	4	 To	5	 To	6	 To	7	 To	8	 To	9	

From	1	 0.00	 2.00	 2.00	 1.97	 1.97	 1.95	 1.96	 2.00	 1.95	
From	2	 2.00	 0.00	 2.00	 1.97	 2.00	 1.96	 2.00	 2.00	 1.92	
From	3	 2.00	 2.00	 0.00	 1.97	 2.00	 1.98	 1.95	 1.94	 1.96	
From	4	 1.97	 1.97	 1.97	 0.00	 1.98	 1.99	 2.00	 1.95	 2.00	
From	5	 1.97	 2.00	 2.00	 1.98	 0.00	 1.99	 1.99	 1.96	 1.95	
From	6	 1.95	 1.96	 1.98	 1.99	 1.99	 0.00	 1.94	 2.00	 2.00	
From	7	 1.96	 2.00	 1.95	 2.00	 1.99	 1.94	 0.00	 1.99	 2.00	
From	8	 2.00	 2.00	 1.94	 1.95	 1.96	 2.00	 1.99	 0.00	 2.00	
From	9	 1.95	 1.92	 1.96	 2.00	 1.95	 2.00	 2.00	 2.00	 0.00	

 
But,	is	all	this	trouble	of	setting	up	indel	and	substitution	costs	to	input	into	the	OM	algorithm	worth	it?	
Why	should	we	care?	What	if	we	were	to	ignore	the	possibility	of	shifts	 in	pattern	chunks	or	even	the	
order	of	the	states	in	these	sequences?	Can	we	obtain	similar	results	from	a	more	parsimonious	approach?	
Having	introduced	the	results	from	the	OM	algorithm,	in	the	next	section	we	take	a	look	at	the	results	for	
the	 similarity	 measures	 from	 other	 algorithms	 that	 account	 for	 temporal	 dependencies	 at	 different	
degrees.	 As	 we	 elaborate	 below,	 these	 other	 algorithms	 do	 not	 maintain	 the	 expected	 order	 in	 the	
similarities	among	students	1	through	3.	

4.4 OM versus other Algorithms 

Results	for	the	three-student	example	are	shown	in	Table	9.	It	is	apparent	the	Hamming	and	Euclidean	
methods	invert	the	sequences	order	for	the	three	students.	For	instance,	sequence	2	is	less	similar	than	
sequence	3	for	the	Hamming	method.	Furthermore,	the	Hamming	method	shows	sequence	1	is	almost	as	
dissimilar	as	sequences	2	and	3,	when	this	is	not	really	the	case.	For	the	Euclidean	method,	the	differences	
are	more	contrasting.	For	instance,	sequence	1	is	no	longer	the	most	similar,	and	thus,	this	order	does	not	
agree	with	what	is	expected	from	a	qualitative	examination	of	the	sequence	plots	(see	Figure	11	above).	

Table	9.	Comparison	of	distance	values	from	different	methods.	Distance	values	have	been	
normalized	for	ease	of	comparison	

Method	 OM	 HAM	 EUC	
Sequence	1	 0.64	 0.90	 0.78	
Sequence	2	 0.95	 1.00	 1.00	
Sequence	3	 1.00	 0.98	 0.73	
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Having	stated	the	validity	of	the	OM	algorithm	to	measure	the	similarity	between	elicited	and	enacted	
movements,	in	the	next	section	we	introduce	the	results	from	our	exploratory	study.	In	particular,	we	are	
interested	 in	studying	whether	students	were	able	to	better	coordinate	their	movements	by	task	9,	 in	
comparison	to	task	6,	and	whether	improving	their	enacted	movements	is	correlated	to	better	learning	
gains.	

4.5 Results from the Exploratory Study 

Findings	 from	 our	 exploratory	 research	 support	 our	 two	 hypotheses.	 First,	 feedback	 loop	 reasoning	
significantly	increased	from	pre-	to	post-tutorial	scores.	This	increase	in	feedback	reasoning	scores	(range	
=	[0,	4];	median	=	1)	is	significant,	Z(15)	=	2.779,	p-value	=	.008,	with	a	large	effect	size,	r	=	.718.	This	effect	
size	was	calculated	dividing	the	Z	value	by	the	square	root	of	N,	as	suggested	by	Pallant	(2007),	and	is	
equivalent	to	Spearman’s	rank	correlation	coefficient.	Second,	using	the	OM	algorithm	with	 indel	costs	
set	to	1	and	substitution	costs	based	on	the	transition	matrix,	OM	scores	were	calculated	for	task	6	(range	
=	[834.9,	1234];	median	=	999.4)	and	task	9	(range	=	[807,	1230];	median	=	1005.9).	Although	these	results	
might	suggest	there	is	not	a	reduction	in	the	average	distance	between	elicited	and	enacted	movement	
across	students,	we	did	find	a	significant	yet	moderate	correlation	between	changes	in	the	distance	values	
from	task	6	to	task	9	and	changes	in	the	feedback	loop	reasoning	from	pre-	to	post-test,	rs	=	–.599,	p-value	
=	 .018.	 Put	 another	way,	we	 found	a	 significant	 difference	 in	 learning	 gains	between	 students	whose	
distance	values	decreased	from	task	6	to	task	9	(median	decrease	in	distance	=	–96.87;	median	learning	
gains	=	2,	N	=	7)	versus	those	students	whose	distance	values	increased	(median	increase	in	distance	=	
75.405;	median	learning	gains	=	0,	N	=	8),	Z(15)	=	2.254,	p-value	=	.032.	These	findings	suggest	there	is	
some	 evidence	 for	 our	 hypothesized	 relationship	 between	 hand	 movement	 and	 conceptual	
understanding.	That	is,	an	increase	in	coordination	(i.e.,	bettering	one’s	movements	to	make	them	more	
like	 the	elicited	movements	by	 the	end	of	 the	 task-based	 interview)	 is	 associated	with	 larger	 learning	
gains.	

5 DISCUSSION 

We	measured	student	hand	movements	to	study	their	sensorimotor	skill	in	responding	to	elicited	gestures	
to,	 in	 turn,	 understand	 embodied	 learning.	 Our	 results	 indicate	 that	 there	 is	 a	 relationship	 between	
measurable	changes	 in	how	students	employ	elicited	gestures	and	 learning	outcomes,	which	 suggests	
there	is	value	in	not	only	eliciting	content-specific	gestures,	but	in	also	modelling	student	embodiments	
in	 a	 manner	 that	 accounts	 for	 temporality	 while	 still	 reducing	 dimensionality.	 Identifying	 and	 then	
analyzing	the	key	features	of	such	dense	datasets	is	an	important	process	that	relies	on	both	statistical	
procedures	and	an	understanding	of	the	learning	processes	to	be	modelled.	Specifically,	we	show	that	
when	analyzing	elicited	hand	movements,	using	statistical	analyses	that	account	for	temporality,	such	as	
the	HMM	and	the	OM,	is	crucial	for	identifying	those	patterns	that	allow	us	to	predict	learning	gains.	Our	
systematic	 analyses	make	use	of	 various	 statistical	methods	 that	 account	 for	 temporal	 dependencies.	
These	methods	fit	the	data	better	than	methods	that	do	not	account	for	temporality.	We	illustrate	this	by	
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comparing	and	contrasting	the	measurement	of	sensorimotor	coordination	at	two	levels	of	analysis.	First,	
we	compare	the	goodness	of	fit	between	two	latent	models.	In	using	a	latent	model,	our	goal	is	to	display	
patterns	of	bimanual	coordination.	The	hidden	Markov	model	proves	to	be	a	good	choice	for	visualizing	a	
sequence	of	latent	states	and	representing	sensorimotor	coordination.	The	LCA,	in	contrast,	proves	to	be	
a	poor	choice.	This	model	has	a	poorer	fit	to	the	data,	and	the	transitions	between	latent	states	are	not	
smooth.	Furthermore,	 the	HMM	produces	a	 latent	 state	 transition	matrix,	whereas	 the	LCA	does	not,	
which	proves	useful	in	further	analysis	of	the	data.	

Second,	we	compare	the	similarity	between	the	computer-elicited	movement	and	the	student-enacted	
movement	 by	 systematically	 decreasing	 the	 control	 of	 temporal	 dependencies	 in	 the	 algorithms	 that	
compute	the	similarity	measures.	This	quantitative	measure	is	important	in	that	appraising	the	similarity	
provides	a	good	 idea	of	 the	 level	of	sensorimotor	coordination	of	each	student.	 In	comparing	the	OM	
distance	 values	 to	 other	 distance	 values	 computed	 from	 algorithms	 that	 do	 not	 control	 for	 different	
aspects	of	temporality	(like	the	Hamming	and	Euclidean	algorithms),	we	find	the	relative	distances	to	the	
reference	sequence	(the	computer-elicited	sequence)	are	not	maintained.	Furthermore,	not	only	are	the	
relative	distances	not	maintained,	but	also	the	distances	do	not	seem	to	agree	with	a	qualitative	judgment	
of	how	each	 student-enacted	 sequence	 should	be	evaluated	vis-a-vis	 the	computer-elicited	 sequence.	
This	is	particularly	serious	for	the	Euclidean	method,	which	ignores	all	temporality	information.	

Finally,	we	use	the	more	robust	models	to	predict	learning	outcomes.	As	we	hypothesized,	there	is	a	clear	
relationship	between	student	facility	with	matching	the	cued	gestures	and	learning	gains.	This	particular	
relationship	would	not	be	salient	without	these	fine-grained	data	and	the	measurement	model,	and	thus	
demonstrates	the	potential	utility	of	these	kinds	of	temporal	analytics	for	predicting	learning	outcomes.	
Conceptually,	we	believe	these	findings	help	to	demonstrate	that	there	is	a	connection	between	student	
ability	 to	 fluidly	model	 the	predator–prey	 relationship	with	 their	 hands,	 and	 their	 ability	 to	 learn	 and	
communicate	this	relationship.	Future	work	is	needed	to	unpack	the	exact	nature	of	this	relationship,	but	
this	is	an	important	next	step	in	demonstrating	the	value	of	both	embodied	designs	for	learning,	and	of	
high-resolution	learning	analytic	approaches	to	help	understand	the	role	these	designs	play	in	learning.	
Specifically,	these	high-resolution	pictures	can	guide	future	analyses	exploring	whether	and	how	strong	
or	soft	embodied	theories	of	learning	operate	at	this	time	scale.	For	instance,	because	measurements	of	
the	change	in	sensorimotor	coordination	antecede	measurements	of	learning	gains,	causal	mechanisms	
like	the	reflexive	abstraction	hypothesis	(Abrahamson	et	al.,	2015;	Piaget,	1952)	could	be	tested	following	
this	 approach.	 Furthermore,	 combining	 the	 results	 from	 these	 fine-grained	 analyses	 with	 classroom	
interaction	analyses	can	help	us	understand	the	role	of	elicited	gestures	at	larger	time	scales	(i.e.,	from	a	
sociocultural	 perspective	 of	 embodiment).	 For	 instance,	 one	 could	 study	whether	 the	 ability	 to	 enact	
these	movements	coincides	with	the	ability	to	transfer	this	understanding	of	quantitative	patterns	to	a	
different	domain	(e.g.,	a	social	system	like	supply	and	demand),	or	whether	these	gestures	can	become	a	
conversational	 resource	 during	 collaborative	 activities.	 All	 in	 all,	 this	 case	 study	 builds	 upon	 the	
development	of	multimodal	 learning	analytics	for	the	research	and	support	of	 learning	within	complex	
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learning	environments	(Worsley	et	al.,	2016)	and	related	work	endorsing	the	use	of	sensing	technologies	
for	the	instruction	of	STEM	concepts	(Lee,	2015;	Lindgren	&	Johnson-Glenberg,	2013).	

While	these	findings	are	compelling,	the	study	is	not	without	limitations	that	we	will	seek	to	address	in	
follow-up	studies.	First,	in	this	exploratory	work,	we	utilized	a	small	sample	size.	Future	studies	will	require	
a	larger	sample	size	to	improve	the	stability	of	the	statistical	tests.	Additionally,	though	the	intervention	
has	a	pre–post	design,	the	lack	of	a	control	group	cannot	rule	out	other	sources	of	variation	and	thus	the	
correlation	detected	here	cannot	imply	causation.	Despite	these	limitations,	we	feel	this	study	sets	out	an	
initial	framework	for	temporal	analysis	of	patterns	related	to	movement	and	gestures.	

6 CONCLUSION 

The	 present	 analysis	 is	 important	 as	 a	 use-case	 to	 illustrate	 the	 application	 of	 temporal	 analytics	 in	
analyzing	movement	data,	and	for	the	study	of	the	consequences	of	using	statistical	analyses	when	such	
information	is	ignored.	The	availability	of	sensing	technologies	is	bound	to	increase	in	coming	years,	and	
researchers	are	taking	advantage	of	this	availability	for	the	design	of	new	learning	environments	that	build	
upon	embodied	interfaces.	The	analyses	we	present	in	this	paper	can	serve	as	a	reference	guide	for	how	
to	 include	 temporal	 analytics	 in	movement	data.	 Researchers	who	use	 sensing	 technologies	might	be	
interested	 in	using	temporal	analytics,	which	can	prove	useful	 for	 increasing	our	understanding	of	 the	
interaction	between	sensorimotor	schema	and	student	reasoning.	The	two	statistical	methods	employed	
here,	the	HMM	and	OM,	and	the	general	approach	outlined,	however,	are	only	one	possible	avenue	for	
carrying	out	these	analyses.	The	particular	temporal	statistical	methods	a	researcher	selects	must	account	
for	the	kinds	of	variables	and	types	of	datasets	available	to	them.	In	any	case,	researchers	should	think	
about	 these	 aspects	 of	 temporality	 before	 data	 collection,	 especially	 if	 synchronization	 across	 data	
streams	would	be	a	requirement.	Finally,	our	approach	suggests	that	a	clear	relationship	exists	between	
how	students	take	up	elicited	gestures,	and	how	they	learn	the	patterns	being	modelled	by	those	gestures.	
This	is	an	important	step	in	advancing	our	understanding	of	the	relationship	between	embodiment	and	
learning.	Future	work	can	continue	to	unpack	this	relationship	and	suggest	additional	nuances	in	how	to	
leverage	gestures	to	support	learning	in	this	and	other	contexts.	
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